Probe of Dark Sectors at LISA:Standard vs Null Diagonistics

Pratyusava Baral¹, Soumendra Kishore Roy¹, Supratik Pal²

¹Department of Physics, Presidendency University, Kolkata, India ²Physics & Applied Mathematics Unit, Indian Statistical Institute, Kolkata, India Based on arXiv: 2005.07231[astro-ph]

Motivation for studying Dark Sectors

Hubble constant (H_0) measured directly from the local Universe (age > 10^{10} yrs; z < 2) does not agree with indirect measurents from the very early Universe (age ~ 4 * 10^5 yrs; $z\sim1100$). Several other tensions also exist pointing at something fundamentally wrong in the standard cosmological model. The Universe is homogeneous and isotropic is primarily parametrized by amount of matter (Ω_{0m}) (both luminous and `dark') and amount of a mysterious energy (Ω_{0n}) that pushes everything away from us. Also these components have a equation of state (EoS) parameter which tells how they evolve with time.

$$E^{2}(z) = \Omega_{0m}(1+z)^{3(1+w_{dm})} + \Omega_{0n}(1+z)^{3(1+w_{dm})}$$

Matter EoS param.=0 in standard paradigm

Dark Energy EoS=-1 in standard paradigm

Accurate EoS parameter measurement is required!!

PROBLEMS

Density Parameters

- Uncertainities in Ω_{0m} and Ω_{0n} introduces errors in EoS parameters.
- All direct measurements are for the local Universe.

SOLUTIONS

- Use Om parametrization Sahni et al. arXiv:0807.3548 [astro-ph].
- Measure the intermidiate Universe using supermassive black hole binary (SMBHB) mergers in LISA.

Parametrizations of Dark Sectorsi. w_0 CDM: $w_{dm} = 0$ 1 Parameter (w_0) ii. CPLCDM: $w_{dm} = 0$; $w = w_0 + w_a z/(1+z)$ 2 Parameters(w_0, w_a)iii. IDE: $w = w_0 + w_a z/(1+z)$ 3 Parameters (w_0, w_a, w_{dm})

Since LISA is not operational yet we forecast <u>errors of the EoS</u> <u>parameters</u> using Fisher <u>Matrix analysis</u> and Om parametrization and compare those with <u>standard</u> parametrization.

How Om parameters solve Problem 1 1) Define a new paramer Om_g(x) in terms of E(x). 2) Define R_g(x₁,x₂,x₃,x₄) in terms Om_g and this parameter is independent of the density parameters.

$$R_{g} = \frac{Om_{g}(x) = \frac{[E(x)]^{2} - 1}{x^{3(1+w_{dm})} - 1}}{Om_{g}(x_{1}) - Om_{g}(x_{2})} = \frac{\frac{x_{1}^{3(1+w)} - 1}{x_{1}^{3(1+w_{dm})} - 1} - \frac{x_{2}^{3(1+w)} - 1}{x_{2}^{3(1+w_{dm})} - 1}}{x_{2}^{3(1+w_{dm})} - 1} - \frac{x_{2}^{3(1+w)} - 1}{x_{2}^{3(1+w_{dm})} - 1}}{\frac{x_{3}^{3(1+w_{dm})} - 1}{x_{3}^{3(1+w_{dm})} - 1}} - \frac{x_{4}^{3(1+w_{dm})} - 1}{x_{4}^{3(1+w_{dm})} - 1}}$$

<u>Results</u>

1. w_oCDM

Error in standard parameterization is much higher than that of *Om* parametrization. This trend shall be observed throughout.

Plot showing errors on w_0 for various fiducial

values of w_0 .

Contact: baralpratyusava@gmail.com for clarifications and comments

Results 2. CPLCDM

Error on w_0 (left) and w_a (right) for various fiducial values of w_0

3. IDE

Error on W_0 (left), W_a (middle) and W_{dm} (right) for various fiducial values of W_0

> <u>Conclusion: Om parameterization can be used to efficiently</u> <u>constrain the EoS parameters at LISA.</u>